Multiple (more than 2) groups: Analysis of Variance (ANOVA): Chapter 5: two basic concepts, Chapter 6: "after the F test" analyses

Treatments often (usually) chosen to answer specific questionsDiet and longevity study (case study 5.1): 6 treatments,5 questions, each a difference between two means (shown in Display 5.3)

Two new statistical concepts in Chapter 5: Pooling variability from more than 2 groups Comparing models \rightarrow the F test and Analysis of Variance (ANOVA)

Pooling variability:

Assume population variance same for all groups

treatments may change means; do not change variances

sample variances of each group, s_i^2 , all estimate the common population variance, σ^2 Pool into a single estimate

weighted average of variances, using df as the weights just like pooling two groups, but now have k groups

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_k - 1)s_k^2}{(n_1 - 1) + (n_2 - 1) + \dots + (n_k - 1)}$$

pooled df = sum of sample-specific df

or: N - k where N is total # obs, k is # of groups

Comparison of specific pairs of means, eg \overline{Y}_a and \overline{Y}_b :

Only change (and a small one) is to the df

se
$$= s_p \sqrt{\frac{1}{n_a} + \frac{1}{n_b}}$$

Note: s_p based on all N obs, has df based on all N obs

"other part" of se based only on sample sizes for the two groups being compared Estimates, T statistic for test, confidence intervals same as with 2 groups

F test: answers a more general question

Do all groups have the same population mean? (the null)

if not, at least one group has a different mean

Note: not all means are different from each other

most groups may have identical means, with just one group different This is a model comparison!

Models for k groups:

Same idea as two-group model comparison, just with more groups model I: all groups have population mean μ

model II: each group has its own population mean μ_i

Not saying $\mu_1 \neq \mu_2$. Just saying they aren't forced to be the same

How well does a model fit the data?: Sum of squared errors = SSE also known as sum of squared residuals Residuals depend on predicted values, which depend on the model. \hat{Y}_{ij} is the predicted value for observation Y_{ij} $SSE = \sum_{ij} (Y_{ij} - \hat{Y}_{ij})^2$ When errors normally distributed with equal variance, SSE is the best measure of fit of a model to data compute SSE for the two models, compare them in a specific way Why not use chi^2 ? Because we are back to normally distributed observations

Mean Square Error: MSE and root Mean Square Error: rMSE

Connection between the fit of model II and pooled variance

 $s_p^2 = \frac{\text{SSE}}{\text{df}}$, when SSE computed using model II predicted values s_p^2 also called MSE (see why a bit later)

 $rMSE = \sqrt{MSE}$, so rMSE for model II is the pooled sd, s_p

 s_p^2 and s_p more commonly used names when 2 groups

MSE and rMSE more commonly used names when more than 2 groups

Full and reduced models

Model I usually called "reduced model"

reduced model always describes the null hypothesis Model II usually called "full model"

F test:

logic: (same as logic for a Chi-square test, just different measures of fit) If Ho is true, model II will fit almost as well as Model I If Ho is false, model II will fit substantially better than Model I What is "almost as well" and what is "substantially worse"? Need to look at change in SSE, change in error df,

and compare to the MSE from model II

$$F = \frac{\text{Difference in SSE/Difference in error df}}{s_p^2}$$
$$= \frac{(SSE_{reduced} - SSE_{full})/(df_{reduced} - df_{full})}{SSE_{full}/df_{full}}$$

When model assumptions appropriate, F has a known theoretical distribution called the F distribution

Many F distributions: depend on:

numerator df = difference in error df

denominator df = df for MSE

Values larger than 4 are usually associated with p < 0.05, unless small df

ANOVA table:

A way to organize the computations. Start with numbers from the two models

Source	df	\mathbf{SS}
Between groups	$df_{reduced}$ - df_{full}	$SSE_{reduced} - SSE_{full}$
Within groups	df_{full}	SSE_{full}
(error, residual)		
Corrected total	$\mathrm{df}_{reduced}$	$SSE_{reduced}$

Then compute the last two columns, using the relationships:

 $MS = \frac{SS}{df}, \text{ for any row}$ $F = \frac{MS_{between}}{MS_{within}}$

Source	df	\mathbf{SS}	MS	\mathbf{F}
Between groups	$\mathrm{df}_{between}$	$SSE_{between}$	$SS_{between} / df_{between}$	$MS_{between}/MS_{within}$
Within groups	df_{full}	SSE_{full}	$SS_{within} / df_{within}$	
(error, residual)				
Corrected total	$\mathrm{df}_{reduced}$	$SSE_{reduced}$		

What do you learn from the "usual" F test:

If accept Ho, no evidence of any difference in means If reject Ho, at least one group has a different mean follow up, "after the ANOVA" methods is Chapter 6

What is the difference between targeted questions and the "usual" F test?Targeted questions are comparisons of specific groupsmore likely to find a difference when that effect is presentusual F test looks for any differencei.e., you aren't sure which effects to look atless likely to find a specific difference